
Huabing Zhao - Tetrate.io

Introducing MetaProtocol Proxy: A Layer-7
Proxy Framework Powered by Envoy

Overview
● Background
● MetaProtocol Proxy
● Use Cases
● Demo

Protocols Used in Microservices
● There are various types of layer-7 traffic in microservices besides HTTP/gRPC

○ RPC：Thrift, Dubbo, proprietary/Private RPC Protocols …
○ Messaging: Kafka, RabbitMQ …
○ Cache: Redis, Memcached …
○ Database: mySQL, PostgreSQL, MongoDB …
○ Other Layer-7 Protocols: ...

● Most of(All?) the current sidecar/edge proxies don’t understand these protocols
○ They mainly focus on HTTP
○ Other protocols are treated as plain TCP

Service Service

Service Service

Service Service

M
es

sa
ge

 B
ro

ke
r

RPC

RPC

RPC

Message

Message

Message

Cache

RDB

NoSQL

What We Want vs What We Get

IP Data IP
Header

TCP Data TCP
Header

Layer-7
Header Data What we want

What we get Data packet

What do we want?

● Traffic management based on layer-7 headers
○ Load balancing at requet level
○ Rate limiting at request level
○ Retry at request level
○ Routing based on layer-7 headers (Thrift

service name/method name, Dubbo
Interface/method/attachment etc.)

○ Fault Injection with application layer error
codes

○ ...
● Application layer observability

○ Stats: request latency/response status
○ Request access log
○ Tracing

● Application layer security
○ User Authentication & Authorization
○ ...

What do we get?

● Traffic management based on layer-3/4 headers
○ Routing based on IP address, TCP Port and

SNI
● Connection layer observability

○ Stats: TCP sent/received bytes/
opened/closed connections

○ Connection layer access log
● Security

○ Connection level authentication: mTLS
○ Connection level authorization: Source IP/

Dest Port/Subjects in Certs

Similarity of Layer-7 Protocols

Protocol Destination service Parameters can be used for routing

HTTP 1.1 host host, path，method
headers

HTTP 2 pseudo header: authority pseudo header: authority, path，method，
headers

gRPC HTTP 2 path Request-Headers(Delivered as HTTP2 headers)

TARS ServantName ServantName, FuncName, Context

Dubbo service name service name, service version, service method

Any RPC Protocol service name in message
header

some key:value pairs in message header

The layer-7 processing of a proxy for different protocols is quite similar:
- Extract layer-7 headers form the tcp stream
- Service Discovery and Routing based on layer-7 headers
- Other processing based on layer-7 headers: Load Balancing, Rate Limiting, Observability, etc.

MetaProtocol Proxy: A Layer-7 Proxy
Framework

In the world of layer-7 protocols, managing traffic is usually done in a similar way. Instead of building a separate Envoy filter for each protocol,
we can gather all the common functions of a layer-7 protocol proxy in one place - the MetaProtocol Proxy filter.

● Two-layer filter chain architecture:
○ MetaProtocol Proxy: a filter in the Envoy L4 filter chain
○ MetaProtocol L7 filter chain:

■ Common logic built into the framework and L7 filters: Load balancing, Rate limiting, Routing(Static and dynamic), Traffic
mirroring, Tracing, Metrics, Logging, etc.

■ Can be extended through custom C++, Lua, and WASM L7 filters
● To create a new layer-7 proxy, only the codec interface(decoder and encoder) needs to implemented (a few hundred lines of code)

Request Path and Response Path

Two important data structures:

Metadata

● Extracted from data packet by the decoder
● Can be any arbitrary key-value pairs
● Used by L7 filters: routing match, rate

limiting match, etc.

Mutation

● Populated by the L7 filters
● Can be any arbitrary key-value pairs
● Used by the encoder to mutate data packet

Request Path

Response Path

Adding a New Protocol

Example code:
https://github.com/aeraki-mesh/meta-protocol-awesomerpc

1. Implement codec interface

2. Configure the application protocol
codec

Adding a New Protocol
Work comparison:

● Before: Huge; write a full-fledged l4 filter (considering the efforts of writing an Http Connection
Manager filter)

● After: Small; write a codec implementation(normally a few hundred of lines, can be done in 1
week by 1 person)

Supported Protocols and Use Cases
Supported Protocols：More than 10 open source and private
protocols

● Dubbo - open source protocol
● Thrift - open source protocol
● bRPC - open source protocol
● tRPC - private protocol used in Tencent
● xxx - private protocol used in Huawei
● xxx - private protocol used in Tencent Music
● xxx - private protocol used in Tencent Games
● ……

Use cases：
● 2022 Olympic online streaming service - private protocol
● Tencent Music - private protocol
● Boss Zhiping - Dubbo，Thrift
● Alauda cloud - Dubbo
● More use cases：https://github.com/aeraki-mesh/aeraki/issues/105

Demo - MetaProtocol Proxy as Sidecar Proxy

Control Plane: Istio + Aerkai(for none-HTTP)
Data Plane: MetaProtocol Proxy

Q&A

https://github.com/aeraki-mesh/meta-protocol-proxy
https://www.aeraki.net/docs/v1.x/tutorials/implement-a-custom-protocol

https://github.com/aeraki-mesh/meta-protocol-proxy
https://www.aeraki.net/docs/v1.x/tutorials/implement-a-custom-protocol

